# 假设的代码示例,展示如何在Scikit-learn中识别多重共线性 from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split import numpy as np
# 生成模拟数据 X, y = make_regression(n_samples=100, n_features=10, noise=0.1) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建线性回归模型 model = LinearRegression() model.fit(X_train, y_train)